Inequality involving triangles

https://www.linkedin.com/groups/8313943/8313943-6385833943903588355
Let $x, y, z>0$ be positive real numbers and S be the area of the triangle $A B C$ with side lengths a, b, c.
Prove that $((x+y) / z) a b+((y+z) / x) b c+((z+x) / y) c a \geq 8 \sqrt{3} S$

Solution by Arkady Alt, San Jose, California, USA.

$$
\sum \frac{x+y}{z} a b \geq 8 \sqrt{3} S
$$

Assuming $x+y+z=1$ we obtain $\sum \frac{x+y}{z} a b=\sum \frac{1-z}{z} a b=\sum \frac{a b}{z}-(a b+b c+c a)$.
Since by Cauchy Inequality $\sum \frac{a b}{z}=(x+y+z) \sum \frac{a b}{z} \geq\left(\sum \sqrt{a b}\right)^{2}$ remains to prove inequality $(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})^{2}-(a b+b c+c a) \geq 8 \sqrt{3} S \Leftrightarrow \sqrt{a b c}(\sqrt{a}+\sqrt{b}+\sqrt{c}) \geq 4 \sqrt{3}$

$$
\begin{equation*}
\sqrt{a b c}(\sqrt{a}+\sqrt{b}+\sqrt{c}) \geq 3 \cdot 16 S^{2}=3 \Delta\left(a^{2}, b^{2}, c^{2}\right) \tag{1}
\end{equation*}
$$

where $\Delta(x, y, z):=2 x y+2 y z+2 z x-x^{2}-y^{2}-z^{2}$.
[1].
For further we need the following auxiliary inequality:

$$
\begin{equation*}
\Delta^{2}(a, b, c) \geq 3 \Delta\left(a^{2}, b^{2}, c^{2}\right) \tag{2}
\end{equation*}
$$

Let $x:=p-a, y:=p-b, z:=p-c$, where p is semiperimeter of $\triangle A B C$, and let $p:=x y+y z+z x, q:=x y z$. Assuming $s=1$ we obtain:
$x, y, z>0, x+y+z=1, a=1-x, b=1-y, c=1-z, S=\sqrt{q}, a b+b c+c a=1+p$, $\Delta(a, b, c)=4(a b+b c+c a)-(a+b+c)^{2}=4 p, \Delta\left(a^{2}, b^{2}, c^{2}\right)=16 S^{2}=16 q$, and inequality (2) becomes $16 p^{2} \geq 3 \cdot 16 q \Leftrightarrow p^{2} \geq 3 q$ where latter inequality is inequality $(x y+y z+z x)^{2} \geq 3 x y z(x+y+z)$ in p , q -notations with normalization by $x+y+z=1$.
Thus, to complete the solution suffice to prove inequality
(3) $\sqrt{a b c}(\sqrt{a}+\sqrt{b}+\sqrt{c}) \geq \Delta^{2}(a, b, c)$.

Let R, r, F and s be, respectively, circumradius, inradius, area and semiperimeter of the triangle with sidelengths $\sqrt{a}, \sqrt{b}, \sqrt{c}$ (easy to check that these three numbers satisfies to triangle inequalities). Then $\sqrt{a b c}=4 R \cdot F, \sqrt{a}+\sqrt{b}+\sqrt{c}=2 s$, $\Delta(a, b, c)=16 F=16 r s$ and inequality (3) becomes $4 R \cdot F \cdot 2 s \geq 16 F^{2} \Leftrightarrow$ $R s \geq 2 F=2 r s \Leftrightarrow R \geq 2 r$ (Euler's Inequality).
[1] Arkady Alt, Geometric Inequalities with polynomial $2(x y+y z+z x)-\left(x^{2}+y^{2}+z^{2}.\right)$, OCTOGON Mathematical Magazine Vol.22,n.2,2014, pp.728-741
Links:
http://www.equationroom.com/Publications/OCTOGON\ Mathematical\ Magazine/ Or, https://www.academia.edu/32055494/Geometric_Inequalities_with_polynomial_ $2 x y _2 y z _2 z x-x--y _-z _O c t o g o n _M a t h e m a t i c a l _M a g a z i n e _v .22 _n .2-_2014 . p d f$

