Inequality involving triangles

https://www.linkedin.com/groups/8313943/8313943-6385833943903588355 Let x, y, z > 0 be positive real numbers and *S* be the area of the triangle *ABC* with side lengths *a*, *b*, *c*.

Prove that $((x + y)/z)ab + ((y + z)/x)bc + ((z + x)/y)ca \ge 8\sqrt{3}S$

Solution by Arkady Alt , San Jose, California, USA.

$$\sum \frac{x+y}{z}ab \ge 8\sqrt{3}S.$$

Assuming x + y + z = 1 we obtain $\sum \frac{x + y}{z} ab = \sum \frac{1 - z}{z} ab = \sum \frac{ab}{z} - (ab + bc + ca)$. Since by Cauchy Inequality $\sum \frac{ab}{z} = (x + y + z) \sum \frac{ab}{z} \ge (\sum \sqrt{ab})^2$ remains to prove inequality $(\sqrt{ab} + \sqrt{bc} + \sqrt{ca})^2 - (ab + bc + ca) \ge 8\sqrt{3}S \iff \sqrt{abc}(\sqrt{a} + \sqrt{b} + \sqrt{c}) \ge 4\sqrt{3}$ (1) $\sqrt{abc}(\sqrt{a} + \sqrt{b} + \sqrt{c}) \ge 3 \cdot 16S^2 = 3\Delta(a^2, b^2, c^2)$, where $\Delta(x, y, z) := 2xy + 2yz + 2zx - x^2 - y^2 - z^2$. [1].

For further we need the following auxiliary inequality:

(2)
$$\Delta^2(a,b,c) \geq 3\Delta(a^2,b^2,c^2).$$

Let x := p - a, y := p - b, z := p - c, where *p* is semiperimeter of $\triangle ABC$, and let p := xy + yz + zx, q := xyz. Assuming s = 1 we obtain:

$$\begin{aligned} x, y, z > 0, x + y + z &= 1, a = 1 - x, b = 1 - y, c = 1 - z, S = \sqrt{q}, ab + bc + ca = 1 + p, \\ \Delta(a, b, c) &= 4(ab + bc + ca) - (a + b + c)^2 = 4p, \ \Delta(a^2, b^2, c^2) = 16S^2 = 16q, \end{aligned}$$

and inequality (2) becomes $16p^2 \ge 3 \cdot 16q \iff p^2 \ge 3q$ where latter inequality is inequality $(xy + yz + zx)^2 \ge 3xyz(x + y + z)$ in p,q-notations with normalization by x + y + z = 1.

Thus, to complete the solution suffice to prove inequality

(3) $\sqrt{abc}\left(\sqrt{a} + \sqrt{b} + \sqrt{c}\right) \geq \Delta^2(a, b, c).$

Let R, r, F and s be, respectively, circumradius, inradius, area and semiperimeter of the triangle with sidelengths \sqrt{a} , \sqrt{b} , \sqrt{c} (easy to check that these three numbers satisfies to triangle inequalities). Then $\sqrt{abc} = 4R \cdot F$, $\sqrt{a} + \sqrt{b} + \sqrt{c} = 2s$, $\Delta(a, b, c) = 16F = 16rs$ and inequality (3) becomes $4R \cdot F \cdot 2s \ge 16F^2 \Leftrightarrow$ $Rs \ge 2F = 2rs \Leftrightarrow R \ge 2r$ (Euler's Inequality).

[1] Arkady Alt, Geometric Inequalities with polynomial 2(xy+yz+zx)-(x²+y²+z².), OCTOGON Mathematical Magazine Vol.22,n.2,2014, pp.728-741 Links:

http://www.equationroom.com/Publications/OCTOGON%20Mathematical%20Magazine/ Or,

https://www.academia.edu/32055494/Geometric_Inequalities_with_polynomial_ 2xy_2yz_2zx-x_-y_-z_Octogon_Mathematical_Magazine_v.22_n.2-_2014.pdf